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AbstrAQ~ - Joyce is a parallel programming language based 
on CSP and Pascal. The language has been moved from the IBM 
PC to the Encore Multimax. The paper explains how the 
multiprocessor implementation of Joyce was guided by 
performance evaluation. The measurements show that the 
speed-up or Joyce programs follows Amdahl's law. 

lndex Ierms - Programming languages, concurrent program­
ming, communicating agents, multiprocessors, language 
implementation. performance evaluation. Joyce. 

I. INTRODUCTION 

Joyce is a parallel programming language based on CSP and 
Pascal [1, 2, 31. The language has been moved from the IBM 
PC to the Encore Multimax [4, 5, 6l. This paper explains 
how the multiprocessor implementation of Joyce was guided 
by performance evaluation. The measurements show that the 
speed-up of Joyce programs is determined by Amdahl's law 
[7]. 

II. BENCHMARK 

The purpose or the performance experiments was to enable us 
to make a meaningful choice between different 
implementations or Joyce. Initially, we learned two lessons 
the hard way. 

Our first benchmark was a parallel prime sieve [1]. This 
turned out to be a poor benchmark, since its performance is 
limited not only by the Joyce implementation but also by 
the sieve algorithm. 

Copyright (c) 1988 Per Brinch Hansen 



JOYCE PERFORMANCE ON A MULTIPROCESSOR 2 

On a parallel computer, performance measurements are 
often distorted by unpredictable factors. These include 
operating system overhead, the presence of other users and 
incorrect measurement procedures. 

Our initial efforts were inconclusive until we realized 
these problems and established two guidelines: 

1. A benchmark must be utterly simple to reveal only the 
performance limitations of the language implementation. 

2. Performance 
they agree with 
observed. 

measurements 
an analytic 

should be trusted only if 
model of the phenomena 

Joyce is well-suited for highly parallel computations in 
which a large number of processes exchange short messages. 
To find out if this programming style is practical on a 
multiprocessor, we used a benchmark with 200 independent 
pairs of processes as shown in Fig. 1. Each pair consists 
of a sender, which outputs a fixed number of messages 
through an unbuffered channel, and a receiver, which inputs 
the messages from the channel. The messages each occupy one 
word. 

Senders Receivers 

Fig. 1. Benchmark. 

The benchmark pushes the multiprocessor to its practical 
limits in three ways: 

1. The number of processes executed simultaneously is an 
order of magnitude larger than the number of processors 
available. 

2. To make the relative overhead 
large as possible, the processes 

of communication as 
exchange the smallest 
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possible messages and perform minimal computations. 

3. After each communication, a process migrates from one 
processor to another in order to distribute the load evenly 
among the processors. 

In the following, we will also use the benchmark to 
illustrate the programming concepts of Joyce. 

A Joyce program consists of nested procedures. Each 
procedure defines a class of identical processes known as 
agents. 

~~ BM(io: iosym>; 
~D§~ q = 200 {agents}; 

m = 3500 {messages per agent}; 
n = 4 {iterations per message}; 

~~stream= [data(integer>l; 

~&§~ SENDERCc: stream; m, n: integer>; 
~~I i, k: integer; 
RWD SEND §.D,g; 

~S§n~ RECEIVER<c: stream; m: integer>; 
~ j, k, n: integer; 
begin RECEIVE ~D,g; 

~ c: stream; i: integer; 
.bWD ACTIVATE~; 

Each pair of agents communicates through a channel c of 
type stream. Through this channel, the agents can transmit 
a sequence of named symbols. The benchmark uses only one 
kind of symbol (named data). This symbol carries a message 
of type integer. 

When program execution begins, a single agent defined by 
the outermost procedure BM is automatically activated. This 
initial agent activates the senders and receivers 

The statement 

ACTIVATE: i :: 0; 
H.b.il~ i < q .d.2 
beg:i,n 

+Cj 
SENDER(c, m, n>; 
RECEIVER(c, m); 
i := i + 2 

n.d 

+C 
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creates a new channel and assigns a reference to the 
channel to the variable c. Strictly speaking, it should be 
called "the channel denoted by c". However, we will often 
refer to it simply as "the channel c". 

The agent statements 

SENDER(c, m, n>; 
RECEIVER(c, m) 

activate a new pair of agents with access to the same 
channel c. These agents run in parallel with all other 
agents (including the initial agent). 

A sender produces and outputs m messages 

SEND: i :: 1; 
wh il.e i <= m ..d.Q 
begin 

COMPUTE; 
cldata(n); 
i :: i + 1 
~ 

A receiver inputs and consumes m messages 

RECEIVE: j :: 1; 
!dl.i.il j < = m ..d.Q 
.bu.i.n 

c?data( n >; 
COMPUTE; 
j := j + 1 

nd 

A communication between two agents takes place when a 
sender is ready to output on a channel c 

cldata(n) 

and a receiver is ready to input from the same channel 

c?data(n) 

The communication assigns the value of the parameter n of 
the sender to the local variable n of the receiver. Cin 
general, the effect of a communication is to assign the 
value of an output expression e to an input variable x.) 

For each communication, an agent performs a local 
computation simulated by a loop 

COMPUTE: k :: 1; 
whil§ k <= n gg k := k + 1 
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The amount of computation can be varied by changing the 
number of iterations n. 

When a sender <or receiver) reaches the end of its 
procedure. it terminates. When all senders and receivers 
have terminated. the initial agent terminates. This 
completes the program execution. 

III. THE ENCORE MULTIMAX 

The Encore Multimax 320 at Syracuse University is a 
multiprocessor with 18 NS32332 processors. A shared bus 
connects the processors to a shared memory of 128 Mb. Each 
processor has a local cache of 64 kb which maintains local 
copies of memory locations accessed by the processor. When 
a processor writes a value into a memory location. the 
value is stored in both the local cache and the memory 
location. If other caches contain previous copies of the 
same location. these copies are removed. 

Any memory location can be used as a spinlock to ensure 
that processors do not access shared data structures 
simultaneously. When a processor waits on a closed lock. it 
reads the lock into its cache once and continues to fetch 
it from the cache until another processor changes the lock 
by opening it. 

The Joyce 
interpreted 
language. 

IV. THE MULTIPROCESSOR KERNEL 

compiler generates portable code which is 
by a kernel of 2300 lines written in assembly 

The benchmark creates a fixed number of agents which 
exchange thousands of messages. The performance of such a 
program is limited by the speed of communication (but not 
by the initial creation of channels and agents). 
Consequently. we will consider only how the processors 
execute agents and synchronize communications. For a 
detailed explanation of the multiprocessor kernel. see [51. 

Every channel and agent is represented by a memory 
segment of fixed length called an activation record. Agent 
records can be chained together to form queues of agents. 

The agents that are ready to run wait in queues known as 
ready queues (Fig. 2). Every processor has its own ready 
queue. When a processor is idle. it selects an agent from 
its ready queue and executes it until the agent either 
terminates or waits for a communication to take place. 

A channel that can transfer several different kinds or 
symbols has a separate agent queue for each symbol. Since 
the benchmark agents exchange one kind or symbol only. each 
channel has just one queue. 
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When a running agent p is ready to communicate on a 
channel, its processor examines the channel queue to see if 
a matching agent q is waiting to communicate on the same 
channel. In that case, the processor retrieves the output 
value e and the address of the input variable x from the 
activation records of p and q, assigns e to x, and moves q 
from the channel queue to the shortest ready queue. 
However, if no other agent is ready to communicate on the 
channel, the processor enters p in the channel queue and 
selects another running agent (if any) from its ready 
queue. 

Communicating agents circulate between ready queues and 
channel queues until they terminate. 

Processors Ready queues Channel queues 

Fig. 2. Queuing network. 

V. EXECUTION TIMES 

The execution times of Joyce programs running on an Encore 
Multimax 320 are expressed in terms of 

n the number of iterations. 
p the number of processors. 

The following execution times Cin us) apply to operands of 
simple types 



JOYCE PERFORMANCE ON A MULTIPROCESSOR 7 

Constant 4. 1 
Variable 4.8 
·- 4.7 ·-<= 4.7 
+ 5.5 
cldata(n) 93 + 5.2p 
c?data ( n) 93 + 5.2p 
HJU.l~ B .d.Q s 5.3 + B + (8.5 + B 

The execution times of other operations, 
creation of channels and agents, are listed 

Communication times increase with 
processors p. If a Joyce program runs on 10 
input or output of a single integer takes 

93 + 5.2 X 10 : 145 US 

+ S)n 

including the 
in [ 5 J. 
the number of 
processors, the 

The most likely explanation of this phenomenon is the 
following: When a processor inputs or outputs a message, it 
scans a shared table of length p to find the shortest ready 
queue. The processor then increments the length of that 
queue. Since the processors share the ready queues, this 
change eventually forces every processor to refetch the 
updated value from memory. Later, we will show that the 
scaled overhead of 5.2 us per processor effectively limits 
the possible speed-up of Joyce programs when the number of 
processors is increased. 

The benchmark consists of cyclical agents. In each cycle, 
an agent participates in a single communication and 
performs a local computation. The cycle time of a sender is 
determined by adding the following execution times: 

Hbil~ i <= m..d.Q 8.5 + 4.8 + 4.7 + 4.8 
begin 

k ·- 1 ; 4.8 + 4.7 + 4.1 ·-while k <= n ,g.Q 5.3 + 14.3 + (8.5 + 14.3)n 
k ·- k + 1 ; (4.8 + 4.7 + 4.8 + 5.5 + 4.1>n ·-c I data Cn); 93 + 5.2p 

i ·- i + 1 4.8 + 4.7 + 4.8 + 5.5 + 4.1 ·-
~ 

The cycle time 

t(p) = 173 + 47n + 5.2p 

increases with the amount of computation n and the number 
of processors p. A receiver has the same cycle time. 

VI. AMDAHL'S LAW 
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Consider the execution of q cyclical agents each of which 
communicates m times. The agents have identical cycle times 
of the form 

t(p) = a + bp 

where ~ and b are constants. 
A single processor can obviously execute such a program 

in time 

TC1) = q m t(1) = q m (a+ b) 

We will show that p processors can execute the same 
program in time 

TCp) = q m t(p)/p = q m (a/p + b) 

T(1) and T(p) are called the sequential and parallel 
execution times of the program. 

The parallel speed-up 

S(p) = T(1)/T(p) 

defines how many times faster the program runs on p 
processors compared to a single processor. 

The speed-up can be rewritten as follows 

p 

S(p) = ------------1 + (p- 1)f 

where 

r = b/(a + b) 

is the fraction of time each agent spends on scaled 
overhead. This is also known as Amdahl's law [7]. 

For our benchmark with q = 200 agents. we have 

173 + 47n 
T(p) = 200m <--------- + 5.2) us 

p 

We used three variants of the benchmark called BM1. BM2. 
and BM3. The execution times of these benchmarks were 
measured on 1-10 processors. Each benchmark used a 
different value of n to obtain a different speed-up. The 
number of messages m was selected to make a benchmark run 
for approximately 30 s on ten processors. 

Table 1 shows the predicted performance of these 
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benchmarks. The speed-up is limited by minute fractions of 
scaled overhead (f = 0.001 - 0.029>. 

BM m n T(p) s f 

--------------------------------------1 
2 
3 

6500 
3500 

300 

0 22~.9/p + 6.8 
~ 252.7/p + 3.6 

10~ 303.7/p + 0.3 

0.029 
0.01~ 
0.001 

Table 1. Predicted performance of benchmarks. 

The curves and plotted points in Fig. 3 represent the 
predicted and measured execution times of BM1. The model 
also accurately predicts the run times of BM2 and BM3. 

T(p) (seconds) 

250 

225 

200 

175 

150 

125 

100 

75 

so 

25 

0 
p 

1 2 3 4 5 6 7 8 9 10 

Fig. 3. Execution times of BM1. 
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Figure 4 shows excellent agreement between the predicted 
and measured speed-up of the benchmarks. BM1 is an extreme 
example of a computation in which parallel agents exchange 
very short messages with minimal processing of each 
message. This benchmark defines a lower bound on speed-up. 
Most programs will perform better! It is encouraging that 
ten processors can speed this demanding benchmark up by a 
factor of almost eight. BM2 and BM3 show that one can get 
arbitrarily close to linear speed-up by increasing the 
amount of computation per communication. 

soo 
10 

9 

8 

7 

6 

s 

4 

3 

2 

1 

1 2 3 4 s 6 7 8 9 10 

Fig. 4. Speed-up of benchmarks. 

VII. SCALED BENCHMARK 

Several researchers have pointed out that linear speed-up 
can be achieved by scaling a computation up as the number 
of processors increases. See, for example, [8]. 

From the previous benchmarks. we derived a scaled 
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benchmark that demonstrates this principle. We assume that 
each agent communicates a fixed number of words m and 
performs a fixed computation for every word. The idea is to 
reduce the communication time by sending a block of n 
integers in each message. 

~~block= arrai [1 •• nl ~integer; 
stream= [data(block)l; 

n.r x: block; 

The input Cor output) of n integers takes 

c?data<x> 96 + 1.7n + 5.2p us 

A fixed computation per word is simulated by letting the 
agents examine every integer in a message. To account for 
this. we need the average execution time of the following 
statements in senders and receivers. respectively: 

x[kl := y Y :: X[k) 35 us 

In the scaled benchmark. the receivers repeat the 
following cycle b times. where b = m/n is the number of 
blocks received 

b := m.Qi~ n; 
wbj.le j <= b .d..Q 
~Kill 

c?dataCx>; 
k :: 1; 
while k <= n .d..Q 

begin 
y := x[kl; 
k := k + 1 

~; 
j := j + 1 

§1!S1 

The cycle time of a receiver Cor sender) is 

t(p) = 176 + 83n(p) + 5.2p 

As a result of the scaling. the message length n(p) is a 
function of the number of processors p. 

The cycle time is of the form 

t(p) = a + bn(p) + cp 

where •· b and ~ are constants. 
A linear speed-up 
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S(p) = p 

is obtained if each processor uses the same amount of time 
per message word independent of the number of processors 
used. that is 

t(p)/n(p) = t(1)/nC1> 

or 

n<p> c 
= 1 + ----- (p- 1) 

n(1) a+ c 

Since the message length can be increased by multiples of 
one word only, we chose 

n(1) = (a+ c)/c =ale+ 1 

Consequently, 

n(p) = a/c + p 

and 

tCp)/n(p) = b + c 

For the scaled benchmark, we have 

n(p) = 176/5.2 + p = 34 + p words/message 

and 

t(p)/n(p) = 83 + 5.2 = 88.2 us/word 

If 40 pairs of agents each communicate 42500 integers, we 
have 

T(p) = T(1)/p: 80 X 42500 X 88.2/p us= 299.9/p s 

Figure 5 shows the predicted and measured linear speed-up 
of the scaled benchmark. 



JOYCE PERFORMANCE ON A MULTIPROCESSOR 13 

S(p) 

10 

9 

8 

7 Scaled Benchmark 

6 

5 

4 

3 

2 

p 
1 

1 2 3 4 5 6 7 8 9 10 

Fig. 5. Speed-up of scaled benchmark. 

VIII. THE COST OF POLLING 

If a receiver does not know in advance how long a stream of 
messages is, the sender can output a (possibly empty) 
sequence of data symbols followed by an eos symbol which 
signals the end of the stream. In that case, the channels 
must be of the following type 

~~ stream= [data(integer), eosl; 

A sender now behaves as follows 

SEND; 
cleos 

while a receiver executes the algorithm 
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more := true; 
H.b.i.l~ more .d.Q 

~.Ql.l 
c?data(n) -> COMPUTE I 
c?eos -> more := false 
~ 

14 

The polling statement delays the receiver until the sender 
is ready to output one of the two possible symbols on the 
channel c: 

1. If the sender outputs a data symbol, the receiver 
inputs the symbol, performs a local computation, and 
repeats the execution of the polling statement (since more 
remains true>. 

2. If the sender outputs eos, the receiver inputs the 
symbol and terminates the loop (by setting more to false). 

The channel c has an agent queue for each of the two 
symbols it can transmit. The polling is implemented by 
examining these queues one at a time to determine if 
another agent is ready to output one of the symbols. If the 
examination is unsuccessful, the corresponding processor 
reenters the receiver in its own ready queue and selects a 
running agent from the same queue. 

If an agent is unable to complete simple input Cor 
output), it waits in a channel queue until the 
communication can take place. Polling is a more expensive 
form of communication which may waste processor time by 
examining the same channel queues repeatedly. 

In Fig. 6, the curve represents the speed-up of the 
simple benchmark BM1. The plotted points show the measured 
speed-up of the corresponding polling benchmark. 
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S(p) 

10 

9 

8 BM1 

7 • PBMl 

6 

5 

4 

3 

2 

p 
1 

1 2 3 4 5 6 7 8 9 10 

Fig. 6. Speed-up with and without polling. 

IX. DESIGN DECISIONS 

The most crucial design decisions are the number of ready 
queues used, the number of locks required, and the 
selection of the ready queue in which an agent is entered 
after a communication. The challenge is to balance the work 
load evenly among the processors with minimal loss of 
efficiency. Several possibilities were evaluated and 
rejected. · 

1. Load balancing is trivial if the processors share a 
single ready queue. A lock associated with the queue 
ensures that the processors never attempt to access the 
queue simultaneously. We did not really expect this simple 
idea to work well for agents that communicate frequently, 
but were curious to find out how poor it is. As you might 
expect, the common lock becomes a bottleneck which forces 
the processors to work sequentially when they select or 
reactivate agents. With ten processors, the speed-up of a 
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benchmark similar to BM1 was 2.7 only. 

2. From then on we used a separate ready queue for each 
processor. A processor always selects a running agent from 
its own ready queue. In order to balance the load among the 
processors, a processor must be able to enter agents in the 
ready queues of other processors. So each ready queue must 
have its own lock. The processors refer most often to their 
own ready queues. Rarely will several processor compete for 
access to the same queue. Consequently, idle processor time 
caused by locking is largely eliminated. (This was verified 
by experiment.) 

However, when several ready queues are used, it is more 
difficult to keep the load evenly balanced between them. 

3. At one point, it seemed reasonable to let each 
processor reactivate agents cyclically among the ready 
queues starting with its own ready queue. Unfortunately, 
this simple algorithms turned out to be unstable. Due to 
random fluctuations, one of the ready queues will always at 
some point be somewhat longer than the other ready queues. 
When an agent from the longer queue communicates, it will 
eventually enter a channel queue and, later, join one of 
the shorter ready queues. Since that ready queue is short, 
the agent is soon resumed, and moves via a channel queue to 
the next short queue, and so on. After a few more 
communications, the agent is right back where it came from 
- in the long queue. This unstability makes some processors 
work overtime, while others are underutilized. 

4. Our next idea was to maintain a table of the lengths 
of the ready queues. When a processor reactivates an agent, 
it scans the table and enters the agent in the shortest 
ready queue. This algorithm might increase the chance of 
processor delays, if the agent had to lock and unlock every 
ready queue during a search. We avoid this problem by 
scanning the table without locking the queues. After 
finding the shortest queue, a processor locks that queue 
only before entering an agent. Occasionally, several 
processors may select the same queue simultaneously and 
extend it. However, this will only temporarily make a queue 
slightly longer than it should be. The imbalance will be 
corrected as soon as some of the agents communicate and 
move to other ready queues. 

5. When the length of a ready queue does not include the 
running agent, another anomaly can occur. Consider a Joyce 
program with two agents only running on two processors. If 
an agent p running on one of the processors communicates 
with the other agent q, while q is waiting in a channel 
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queue, the processor may enter q in its own (empty) ready 
queue. Both agents now run on the same processor, while the 
other processor is idle. (This phenomenon was also 
demonstrated by experiment.) In the final kernel, the queue 
length defines the number of agents currently served by a 
processor. This is the number of agents waiting in the 
ready queue plus the running agent (if any). 

6. The previous algorithm can be improved further by 
measuring the amount of processor time used by an agent 
from the moment it is selected as a running agent until it 
enters a channel queue. When an agent is reactivated, its 
previous time slice is used as an estimate of its next time 
slice. The length of a ready queue is replaced by the 
estimated amount of processing time needed to allocate 
another time slice to each of the running and waiting 
agents. Although one can construct unusual Joyce programs 
that run faster under this scheduler, it does not improve 
the performance of ordinary programs, such as the 
benchmarks. So our present choice is the simpler scheduler 
described previously. 

Every channel has its own lock. If a channel connects two 
agents only, at most two processors can attempt to access 
it simultaneously. Even that is a rare event which can 
occur only if the two agents happen to be running 
simultaneously. So we do not expect channel locks to reduce 
processor performance. 

The memory allocation of activation records takes place 
in a stack as described in [5]. A single lock ensures that 
processors create and remove activation records one at a 
time in this program stack. Since activations and 
terminations of agents and channels are rare events 
compared to communications, we do not anticipate that this 
lock will influence the performance of the multiprocessor 
aignifican tly. 

X. FINAL REMARKS 

We have moved the parallel programming language Joyce from 
a single processor to a multiprocessor. The main design 
decisions were the number of scheduling queues used, the 
number of locks required, and the implementation of load 
balancing. We have treated these decisions as performance 
issues and settled them by benchmark experiments. The 
performance of the final product is predicted accurately by 
a simple deterministic model. 
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